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Generalized commutators and deformation of strong coupling 
superconductivity 

~ ~ 

Wei-Yeu Chen and Choon-Lin Ho 
Department of Physics, Tamkang University, Tamsui. Taiwan 25137, Republic of China 

Received 17 August 1992 

Abstract. We consider quantum deformation of a strong-coupling superconductivity model 
based on creatioulannihilation operators which satisfy generalized commutator relations. It is 
found that the nature of the superconducting phase transition cm be changed f” the usual 
second-order IO a firs-order transition, if the deformation parameter exceeds a certain critical 
value. Metastable normal and superconducting states can exist when the transition is of the first 
order. 

The concept of quantum groups and algebras~ has its origin in the development of the 
quantum inverse method and the study of solutions to the Yang-Baxter equation [I]. These 
new mathematical stluctures have already found applications in exactly solvable statistical 
models [2] and in two-dimensional conformal field theories [3]. An interesting development 
in the theory of quantum goups is the realization of the quantum SUq(2) algebra in 
terms of creation and annihilation operators that satisfy a generalized commutator relation 
characterized by a parameter q. Such a harmonic oscillator is generally called a q-oscillator 
in the literature [4]. Many works immediately follow along the same line, including the 
construction of fermionic q-oscillators, and the q-oscillator realization of other quantum 
groups [5]. 

Although q-oscillators are usually treated as a means to realize various quantum 
groups, they are interesting objects in their own right. They can be viewed as creation 
and annihilation operators of particles obeying intermediate statistics, i.e. statistics that 
interpolate between Bose and Fermi statistics. It is therefore natural to study quantized 
field theory and many-body problems using these oscillators. Such studies. however, 
do not appear to have been attempted systematically (only a few works appear in the 
literature [6 ,7]) .  The purpose of this paper is to give an example of a q-deformed model 
of superconductivity and to discuss how its property changes according to the degree of 
deformation. 

We consider a q-analogue of a strong coupling limit model of superconductivity 
discussed by Thouless in [8]. The model was first proposed by Wada et al and by Anderson 
[9]. Its Hamiltonian is 

H = T C(a!+ai+ + aI-ai-1- J Ca,T,a!-aj-aj+ (1) 
i j  

where ai+(aT+) is the fermionic annihilation (creation) operator for a particle with 
momentum i and spin up (+), and ai-(a/-) is the fermionic annihilation~(creation) operator 
for a particle with momentum -i and spin down (-). T and J are positive constants. This 
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model can be exactly solved by transforming (1) into a SU(2) spin model. In the case where 
T is equal to the chemical potential of the system (which is the case corresponding to the 
situation considered in the Bcs theory), it is found that the system undergoes a second-order 
phase transition into the superconducting state as the temperature decreases. We shall see 
later that the nature of the phase transition is changed by quantum deformation. 

The operators ai+ and a!* are now treated as annihilation and creation operators of 
fermionic q-oscillators [5] satisfying the algebra with a real deformation parameter q = ey: 
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t t a;*a;* + qa;*a;+ = qN.* 

U&fli+ t +q-'ai:a;* = q-N'" 

( a i ~ , a j s } = ~ a , t , , a ~ ~ ~ = ~  foranyi, j , a , p ( a , p = & )  

( u ; ~ ,  = o for i # j 

{a;+, a!-} = 0 

[N;+, .it,] = aii, 

(2) 

IN&, a;+] = -a. E+. 

Equation (2) implies that 

Eigenvalues of Nj* are either 0 or 1. The Hamiltonian of a q-oscillator is given by 

Hi* ;(a!+a;* - t 

1 - q-hit  - _  - 
2 q w  1 q-'/2 

- sinhyh;+ 
2sinh(y/2) 

- (4) 

I where hi+ N;+ - ?. 
As pointed out by Floratos [7] (for the case of bosonic q-oscillators), the q-analogue 

of the kinetic term of a~Hamiltonian is not simply the sum of the Hamiltonian of each 
oscillator. The reason is this. There is a U ( M )  symmetry (M is the number of oscillators 
used to define the theory) in the kinetic part of (1). By simply taking the same form of the 
kinetic term in (1) for the q-oscillators, one does not get the corresponding quantum U,(M) 
symmetry in the Hamiltonian. Extending Floratos' construction to the fermionic case, we 
have to add the Hamiltonians of two q-oscillators, e.g. Hi+ and H;-, in the following way 

H = Hi+q-h'- + qhi+ Hi- 
- - sinh y(h;+ + hi-) , ,, 

Zsinh(yj2) 

in order to preserve the U, (2) symmetry in this case. 

( 5 )  
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This observation leads us to propose the following q-deformed version of the 
Hamiltonian (1) 

It can be easily checked that 

as desired. The reason for the choice of the form of HI will become clear later. 
We now show that the model described by (6) is equivalent to a quantum SU&) spin 

model. First we note that a pair of levels (levels with the opposite momentum and spin) 
will remain singly occupied, if it is occupied by only one particle at some time. This is 
so because there is no second particle for the one particle to scatter against, and no pair of 
particles can scatter into the levels owing to the 'exclusion principle' given by (2). Hence 
we can exclude all half-filled pairs of the levels from the sum in (6). 

Taking the sum in (6) to be over all paired states, one can transform the model into 
an exactly solvable spin model. First define the operators s: a/+& s; = ui-ai+ and 
sp = $(hi+ + hi-). Clearly s: and sz: creates and annihilates, respectively, two particles 
in the ith pair of level. They satisfy 

Thus the three operators sp, SF for the same index i satisfy the quantum algebra SUq(2), 
and can be viewed as some kind of 'quantum spin' operators. Since hi+ = 4 or -+ when 
Ni* = 1 or 0 respectively, we see from the definition of si" that if the ith pair of levels is 
occupied (unoccupied) the corresponding 'spin' is up (down). We can add these spins as 
follows 

These total spin operators again satisfy the SUq(2) quantum algebra. It is now obvious that 
(6) can be rewritten as 

sinh 2y So 
2sinh(y/2) 

H = T  - JS'S-. 
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This shows the equivalence of the original Hamiltonian and a SUq(2) spin model. 
The Hamiltonian H in (10) can be diagonalized. The simultaneous eigenvalues of So 

and S+S- are m and [j+ml[j-m+l] respectively, wherem, j areintegers orhalf-integcrs 
(m = - j ,  - j + 1, . . . , j - 1, j). If the total number of completely filled and completely 
unfilled pairs of levels is B ,  then the largest value of j is j = i B ,  and the total number of 
ways of making j = 4B - r is 
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B ! ( B  - 2r + 1) - - B! - B !  
r!(B-r)! ( r - l ) ! (B- r+ l ) !  r ! ( B - r + l ) ! ’  

Suppose there are D completely filled pairs in the system. Then m = D - +B. The 
eigenvalueof H with J = $ B  - r  andm = D - 4 B  is 

sinh2y(D - B/2) 
~ - J [ D  -r][B - r  - D + 11. = 2sinh(y/2) 

The condition -j < m < j implies that r is no greater than either D or B - D. The 
degeneracy of this level is given by (1 1). For fixed B and D ,  the ground state corresponds 
to r = 0, and is non-degenerate. 

Now that we have the complete energy spectrum of the system, we may proceed to 
study its statistical mechanical property. Suppose there are Q half-filled pairs of levels. 
Then the total number of pairs in the system is K = B + Q. There are K ! / Q ! ( K  - Q)! 
ways of choosing the Q pairs, and 2Q ways of filling one particle into each of them. The 
energy of each single particle is T according to (1). The grand partition function is [lo] 

- ~ ( 2 0  + Q)] 1. (13) 
sinhy(D -r)sinhy(K - Q -r  - D  + 1) 

- J  
(sinh 

Here p is the chemical potential. We are only interested in the case with p = T which 
corresponds to superconductivity [8]. 

The sum in (13) is very difficult to evaluate, even in the non-deformed case. If the 
deformation parameter y is very small, we can adopt Thouless’ argument. The region over 
which the sum is taken is a tetrahedron bounded by the planes Q = 0, r = 0, D = r ,  and 
D + Q + r = K. The number of points in this temhedron is equal to its volume K3/12. 
If 20 is the maximal value of the summand of (13). then we have Z, < Z < ZoK3/12. 
Since physical quantities are found from I n 2 / V ,  where V is the volume of the system, 
we can therefore take Z, as a very good approximation of Z. The error goes at most as 
V-’ In V ,  as the number of pairs K is supposed to be proportional to the volume. To find 
the state of the system with the lowest free energy, it is sufficient to find the maximum of 
the summand. Setting the first derivatives of the summand with respect to r, Q and D to 
zero, one finds that the extremum of the summand occur at points satisfying 

E- 1=exp  [ - p J  h (smhy)2 . sinh[yK(1-2&)]} ( 144 

Q=2(&-r)  (14b) 

coshy(K - Q - 2 0 )  sinhy(K - Q - 2 0 )  = 0. (14c) ”’ - BYT sinh(y/2) sinh*y 
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~ ~ In the limiting case y + 0, (14a) and (14c) reduce to 

K - Q - 2 0  = 0. W b )  

Equations (15), together with (14b). are the equations given in [SI. It is easy to see 
that f l  = is always a solution to (1%) (and (14a).as well). This point, given by 
(r = K/4, Q = K/2, D = K/4) , IS ’ just on the edge of the tetrahedron allowed for r,  Q 
and D, and is related to the ‘normal’ state of the system [SI. As the temperature decreases, 
the maximum stays at the same point until p exceeds some critical value pc, after which the 
maximum lies inside the tetrahedron (r < K/4). This new maximum is taken to be related 
to the ‘superconducting’ state of the system. The critical temperature can be easily found 
by putting - S into (15a), where 6 is an infinitesimally small positive number. 
The result is p,JK = 4. The phase transition is second order in nature. 

m, 
(I4a) becomes 

= 

For very small, but finite deformation parameter y .  one must solve (14). Let w 

Of course, as mentioned previously, w = = a) is always a solution to 
(16). For sufficiently small y ,  the only solution of (14c) which has the solution w = f 
staying within the tetrahedron is again (1%) (remembering that we are only interested in 
the situation where p = T ) .  So we have D = f ( K  - Q) and Q = 2Kw(l- w). The zeros 
of F(w) are found from the intersection of F(w) and the w-axis. 

The results are summarized as follows. For very small y ,  the behaviour of the system 
as its temperature changes is essentially the same as in the non-deformed case ( y  = 0) 
described previously. In figure 1 we show the ,-phs of F(w) at various values of p J K  
for the case of y = 0.00018 and K =-7000. When p J K  < 4, the zero is always at 
M I  (U = i), which is the maximum as can be checked from the second derivatives of 
the summand at this point. This is the ‘normal’ state. But as p J K  increases beyond 
p,JK = 4, the maximum MZ moves away from M I  towards w = 0. The point MZ 
represents the ‘superconducting’ state. 

(i.e. 

MI 
0.5 /- 0.3- - ‘ C  - M 2 7 - -  

.1 - 
/ / 

Figure 1. Graphs of F(w)  for y = 0.00018, K = 7000 and p J K  equal lo: (1) 2.0000; (2) 
3.9000; (3) 4.7000. 
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If the deformation parameter y is increased further, while keeping the number of levels 
K fixed, we find that there exists a critical value yc beyond which the nature of the 
phase transition changes: the transition becomes first order. Figure 2 shows the graphs 
of F ( w )  for the case of y = 0.0003 (> ye = 0.0002) and K = 7000. For high enough 
temperatures (small P JK), the maximum is again at M1 (w = i). When J K approaches 
PI J K  = 3.5330, an"inflexion' point I develops. As P J K  increases further, I bifurcates 
into a new local maximum MZ and a saddle point S. At P z J K  = 3.6475, the values 
of the summand at MI and MZ become equal. This is a first-order transition point. We 
note that the critical temperature is higher for larger y ( A J K  < 4). For P J K  =- P z J K ,  
the system is in the 'superconducting' state M2, and the saddle point S moves towards 
M I .  The existence of two local maximum also indicates that metastable states are possible. 
Here MI represents the metastable 'normal' state that could occur when the temperatures 
of the system is being lowered, and MZ the metastable 'superconducting' state when the 
temperature is being increased. 

-0.1 

-0.3 

-0.5 I I' / 

Figure 2. Graphs of F ( m )  far y = O.OW30. K = 7000 and p J K  equd to: (1) 3.2000; (2) 
3.5000; (3) 3.5330; (4) 3.6000; (5)  4.0000. 

For fixed y ,  we also find that the number of pairs of levels can affect the phase 
transition. There exists a critical value of K, K,, beyond which the phase transition changes 
from second order to first order. For instance. we find numerically that K, = 2830 for 
y = 0.0005. 

To conclude, we have studied a q-analogue of the strong-coupling superconductivity 
model discussed by Thouless. It is found that the deformation of the oscillator algebra 
can change the nature of superconducting phase transition from the usual second order to 
first order, and that metastable normal and metastable superconducting states are allowed in 
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the first-order transition. Critical temperature is higher for larger deformation. One might 
interpret these results as follows. From (5) or (7) one sees that the q-deformed kinetic 
term is not free as it was when there is no deformation. Hence the effect of deformation 
can be viewed as ‘turning’ on some kind of effective interaction among the paired normal 
oscillators. This interaction has the tendency to change the nature of superconducting 
transition, and its strength increases according to the degree of deformation and the number 
of paired states. 
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